
Python
metapackages
Roberto Pastor Muela
Ansys
Introduction

Organizations experience problems
when distributing multiple packages.
What if you could easily distribute all
your packages in one single package?
Python metapackages are here to solve
your problems!

The metapackage
concept
Pythonmetapackages are empty Python
libraries that contain only a version
attribute. However, they use a "depen-
dencies" section to declare all libraries
that are required for the installation.
This trick can be used to install all the
desired projects of a large community.

Example use case
Say you have a Python metapackage
called my-package. By installing it, users
get your defined dependencies and also
have access to additional targets you
define. See the graph on the main
section of this poster.

File structure
•The src/<my-package> folder has an
__init__.py file that simply contains
your metapackage version.

•A build system requirements file,
pyproject.toml, setup.py), contains
with your dependencies and extra
targets. Dependency versions can
be pinned down. For example,
numpy==1.21.0) or flexible (numpy).

Metapackage structure
Required and extra dependencies groups

Metapackage layout

Want to see an example repository?
✓Visit https://github.com/ansys/pyansys
Any questions?
✓Don’t be shy and start the conversation!

Benefits of using a
metapackage
•One-stop shop: All your Python pack-
ages are delivered together and are
easily made available to end users.

•Dependencies compatibility: No
incompatibility issues amongst
dependencies can occur (when using
CI/CD for building the package).

•Easier install process: Rather than
installing each package individually,
install all packages with only one
installation command.

•Multiple targets: The metapackage
may not only have required dependen-
cies, it may also have extra targets
(additional dependencies) for other
purposes.

•Pinned versions (optional): Depen-
dency updates sometimes lead to
incompatibilities that users are not
aware of. By having a metapackage
that pins down your dependencies
to a certain version, you make sure
that for a given version your scripts
are compatible with all the depen-
dent libraries. Thismakes dependency
handling much easier for end users.

The PyAnsys project is a collection of
Python packages that enable the use of
Ansys products through Python.
Any questions?
Contact us at pyansys.core@ansys.com.

See our docs for more

information on PyAnsys:

https://docs.pyansys.com


