Python
metapackages

Roberto Pastor Muela
AnNsys

/ Introduction

Organizations experience problems
when distributing multiple packages.
What if you could easily distribute all
your packages in one single package?
Python metapackages are here to solve
your problems!

/ The metapackage
concept

Python metapackages are empty Python
libraries that contain only a version
attribute. However, they use a "depen-
dencies" section to declare all libraries
that are required for the installation.
This trick can be used to install all the

desired projects of a large community.

/ Example use case

Say you have a Python metapackage
called my-package. By installing it, users
get your defined dependencies and also
have access to additional targets you
define. See the graph on the main
section of this poster.

/ File structure

e The src/<my-package> folder has an
__init__.py file that simply contains
your metapackage version.

e A build system requirements file,
pyproject.toml, setup.py), contains
with your dependencies and extra
targets. Dependency versions can
be pinned down. For example,
numpy==1.21.0) or flexible (numpy).

Metapackage structure

Required and extra dependencies groups

Required dependencies

Visualization dependencies

ML dependencies

Want to see an example repository?
v' Visit https://github.com/ansys/pyansys

Any questions?
v'Don’t be shy and start the conversation!

/ Benefits of using a
metapackage

e One-stop shop: All your Python pack-
ages are delivered together and are
easily made available to end users.

e Dependencies compatibility: No
incompatibility Issues amongst
dependencies can occur (when using
CI/CD for building the package).

e Easier install process: Rather than
installing each package individually,
install all packages with only one
installation command.

e Multiple targets: The metapackage
may not only have required dependen-
cies, it may also have extra targets
(additional dependencies) for other
purposes.

¢ Pinned versions (optional): Depen-
dency updates sometimes lead to
incompatibilities that users are not
aware of. By having a metapackage
that pins down your dependencies
to a certain version, you make sure
that for a given version your scripts
are compatible with all the depen-
dent libraries. This makes dependency
handling much easier for end users.

Py/Ansys

The PyAnsys project is a collection of

Python packages that enable the use of
Ansys products through Python.

Any questions?
Contact us at pyansys.core@ansys.com.

See our docs for more
information on PyAnsys:

https://docs.pyansys.com




